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Numerical simulation of minimum B-jumps at abrupt drops
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SUMMARY

A numerical simulation of minimum B-jumps in horizontal rectangular channels having an abrupt drop is
given. Gradually varied, steady, supercritical flow is assumed as the initial condition. An unsteady flow
is created by increasing the downstream depth. One-dimensional, unsteady Saint-Venant equations are
solved by using the MacCormack and the dissipative two–four explicit finite difference schemes. The
steady flow solution is obtained by treating the time variable as an iteration parameter and letting the
solution converge to the steady state. The abrupt drop is treated as an interior boundary and solved by the
method of characteristics. The results are compared with experimental and analytical studies. Copyright
q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The hydraulic jump used for energy dissipation is usually confined partly or entirely to a channel
reach that is known as the stilling basin. The bottom of the basin is paved to resist scouring. In
practice, the stilling basin is seldom designed to confine the entire length of a free hydraulic jump
on the paved apron, because such a basin would be too expensive. Consequently, accessories to
control the jump are usually installed in the basin. The main purpose of such control is to shorten
the range within which the jump will take place and thus to reduce the size and cost of the stilling
basin. The control has additional advantages, for it improves the dissipation function of the basin,
stabilizes the jump action and in some cases increases the factor of safety.

In the design of stilling basins, whenever the tailwater depth is greater than the required sequent
depth of a simple hydraulic jump, the jump moves upstream and causes drowned jump which
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Figure 1. Schematic representation of minimum B-jump.

reduces the efficiency of the structure and the jump. The only way to prevent drown jumps is
to use an abrupt drop. But experiments show that, when the jump is controlled by abrupt drops,
four different forms of flow occur. The formation of these different types of hydraulic jumps at an
abrupt drop depends on the upstream Froude number, the relative depth of tailwater with respect
to initial depth and the relative drop height [1, 2].

The flow condition for which the jump occurs in the upstream channel reach and the surface
roller entirely forming on the step is called A-jump. Lowering the tailwater elevation, the jump
moves downstream. The flow on the drop becomes supercritical and a stationary wave forms on
the downstream side of the drop. This is characterized by a nearly horizontal upstream profile
and a curved surface jet, and it is called wave case. Further lowering the tailwater elevation will
cause the wave to break and form a surface roller such that a jump forms right after the drop.
This type is called B-jump. B-jumps are characterized by a downward curved jet at the drop. On
the drop face, the pressure distribution is non-hydrostatic and may assume subatmospheric values.
The velocities near the channel bottom, in front of the drop, are high. Having high scouring power
and being ineffective in dissipation of kinetic energy, B-jump is the most undesired jump type.
Whenever an abrupt drop is used to control the jump, it becomes important to determine the
location of the jump, especially B jump, so that the channel can be protected. Further lowering the
tailwater elevations will cause formation of the so-called minimum B-jump, which is the type of
jump that occurs away from the drop. A schematic representation of minimum B-jump is shown
in Figure 1. In Figure 1, y1 and y2 are the upstream and downstream flow depths, respectively. u1
is the upstream flow velocity and �z is the drop height. The parameters which determine the jump
type are: the upstream Froude number, Fr1 = u1/

√
gy1, relative downstream depth, Y = y2/y1,

and relative drop height, S =�z/y1.
In the literature, although standing waves which occur in channel transitions in supercritical

flows and hydraulic jumps have been studied extensively by experimental techniques [3–7], few
studies aims to simulate hydraulic jump with all its properties numerically [8, 9]. On the other
hand, over the past 10 years, studies focussing on the numerical simulation of sharp transients
have been investigated covering the range from the classical shallow water approach [10–13] to
sophisticated investigations assuming non-hydrostatic pressure distributions [14–16]. Most of the
time, to evaluate the robustness and accuracy of the numerical technique, simulation of hydraulic
jump is used as a test case [17, 18]. In these studies, the type of the jump, its relation to the Froude
number and depth ratios, its location are not provided. The main concern is on the numerical
technique, and hydraulic jump has been used as a test case only. For example, the work of
Reference [14] is concerned with the computation of incompressible, axisymmetric, and full three-
dimensional free surface flows. In particular, the circular hydraulic jump is simulated and compared
with approximate analytic solutions.
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The numerical solutions of open-channel flows are difficult due to defining the boundary con-
ditions of the free surface and also non-rectangular and unknown geometry. In order to eliminate
this difficulty, the open channel flow equations are integrated over the depth; leaving the depth as
a dependent variable and eliminating the free surface as a boundary of the solution region. By this
averaging process, a two-dimensional problem becomes one dimensional. Since the variable part
of the boundary is eliminated, the solution domain becomes fixed.

Finite difference techniques have been used in the simulation of open channel flows [19–24].
Gharangik and Chaudry [9] solved the Boussinesq equations to simulate the formations of a
simple hydraulic jump in a rectangular channel having a small bottom slope. They also inves-
tigated the importance of Boussinesq term. Their simulations showed that the Boussinesq term
have little effect in determining the location of the hydraulic jump. Reference [23] describes the
development of a mathematical model which solves the one-dimensional unsteady water flow
equations. It is based on the MacCormack second-order explicit scheme. The treatment of the
external and internal boundaries has been made by means of the method of characteristics. Their
solution simulates the shock formations for supercritical flow. These two papers [9, 23] showed
that second-order numerical schemes give satisfactory results for the solution of gradually var-
ied flow equations. An unsteady flow model may be used to obtain steady flow solutions by
using time as an iteration parameter. If a shock capturing technique is used, mixed sub and su-
percritical flows, such as hydraulic jumps may also be simulated. In fact, this study together
with Gharangik and Chaudry’s [9] study inspired us to simulate minimum B-Jumps at abrupt
drops.

In the present study, numerical simulation of minimum B-jump at an abrupt drop is investigated.
Although there are much more sophisticated numerical methods on the solution of hydraulic jumps
[11–16], the present study focuses on a particular case, namely, ‘numerical simulation of minimum
B-jumps at abrupt drops’ by using a relatively simple method by which the location of the jump
can also be determined. In the present study, one-dimensional, unsteady Saint-Venant equations are
solved by using the MacCormack and the dissipative two–four explicit finite difference schemes.
The steady flow solution is obtained by treating the time variable as an iteration parameter and
letting the solution converge to the steady-state flow. The abrupt drop is treated as an interior
boundary and solved by using the method of characteristics.

2. GOVERNING EQUATIONS

In the solution of gradually varied flow, one-dimensional unsteady Saint-Venant equations may be
used. Including the gravity and friction slope terms, the one-dimensional, unsteady Saint-Venant
equations for a prismatic channel may be written in vectorial form as [9]

�G
�t

+ �F
�x

= S (1)

where G, F and S are defined as

G=
[

y

uy

]
(2)
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F=
[

uy

u2y + 1
2gy

2

]
(3)

S=
[

0

gy(So − S f )

]
(4)

in which x is the distance along the channel bottom, t is the time, u and y are the flow velocity and
depth in the x-direction, respectively, g is the gravitational acceleration, So is the channel bottom
slope, and S f is the friction slope according to Manning equation:

S f = n2
u|u|
R4/3

(5)

where, n is the Manning-roughness coefficient, R is the hydraulic radius, and for wide rectangular
channels R ∼= y.

Therefore, in vectorial form, the first component of Equation (1) gives the continuity equation
and the second component gives the momentum equation.

3. NUMERICAL SIMULATION METHOD

In order to simulate the hydraulic jump, Equation (1) is solved numerically. The time derivative
term is considered as an iteration parameter and the unsteady flow solution is iterated until a steady
state is reached. If a shock capturing technique is used, the jump forms as a part of the solution,
and its location is predicted. The calculations are started with the initial conditions defined along
the channel. The initial conditions are described by assuming a supercritical flow in the entire
channel. Then an unsteady flow is introduced by increasing the downstream depth to a value,
which gives a subcritical flow.

The horizontal channel is divided into ‘N ’ sections of equal length, �x . Therefore if the first
node (upstream boundary) number is (1), then the last node (downstream boundary) number is
(N + 1). Abrupt drop is placed at the M th node. The initial flow in the channel and the node
numbers are shown in Figure 2.

Two numerical schemes are used for the solution: The MacCormack scheme and the dissipative
two–four scheme. The MacCormack scheme is second-order accurate both in space and time.

∆x∆x ∆ x

upstream 
boundary 

downstream 
boundary 

initial water surface profile

Q

Fr > 1

∆z
1 2 3 I I+1 M-1

 1+N N 1-NM+1MChannel bottom 

Fr > 1

Figure 2. Schematic representation of flow at t = 0 (initial condition).
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Dissipative two–four scheme is fourth-order accurate in space and second-order accurate in time.
At the computational nodes next to the boundaries, the MacCormack scheme, which requires data
only one point upstream and downstream, is used. However, at interior points, where a jump
may take place, dissipative two–four scheme, which requires data at two neighbouring nodes is
preferred. The abrupt drop is treated as an interior boundary and solved by using the method of
characteristics.

3.1. The MacCormack scheme

This scheme is a two-step, non-centred, time-marching explicit finite difference technique devel-
oped by MacCormack [25]. It is second-order accurate in space and time. One-sided differences
(forward or backward) are used to replace the spatial derivative. The scheme has two steps: pre-
dictor and corrector. Forward finite differences are used in the predictor part and backward finite
differences in the corrector part. The values of y and u are assumed to be known at time (k) either
from the given initial conditions or computed by using the values obtained at the previous time
step. Then, the solution at time (k + 1) for the computational node (i) is obtained as follows [9]:

Predictor:

G∗
i =Gk

i − �(Fk
i+1 − Fk

i ) + �t Ski (6)

Corrector:

G∗∗
i =G∗

i − �(F∗
i − F∗

i−1) + �t S∗
i (7)

The value of G at time (k + 1) is then evaluated as

Gk+1
i = 1

2 (G
k
i + G∗∗

i ) (8)

where � =�t/�x ; k refers to known time level and (k+1) refers to unknown time level. Superscript
(*) indicates predicted variable, whereas (**) indicates corrected variable. The subscripts (i), (i−1)
and (i + 1) refer to computational nodes.

The MacCormack scheme is used to solve the governing equations at the computational nodes
which are next to the boundaries, i.e. at the nodes (i) where i = 2, (M − 1), (M + 2), and (N ).

Substituting Equations (6) and (7) into (1), the predictor and corrector parts are written as
follows.

Predictor:
Continuity equation:

y∗
i = yki − �(uki+1y

k
i+1 − uki y

k
i ) (9)

Momentum equation:

u∗
i y

∗
i = uki y

k
i − �{[(uki+1)

2yki+1 + 1
2g(y

k
i+1)

2] − [(uki )2yki + 1
2 (g(y

k
i )

2)]}
+�tgyki (So − S f )

k
i (10)

where

Skf i =
n2uki |uki |
(yki )

4/3
(11)
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Corrector:
Continuity equation:

y∗∗
i = y∗

i − �(u∗
i y

∗
i − u∗

i−1y
∗
i−1) (12)

Momentum equation:

u∗∗
i y∗∗

i = u∗
i y

∗
i − �{[(u∗

i )
2y∗

i + 1
2g(y

∗
i )

2] − [(u∗
i−1)

2y∗
i−1 + 1

2g(y
∗
i−1)

2]}
+ �tgy∗

i (So − S f )
∗
i (13)

where

S∗
f i =

n2u∗
i |u∗

i |
(y∗

i )
4/3

(14)

3.2. Dissipative two–four scheme

This is a finite difference scheme similar to the MacCormack scheme. The scheme was developed
by Gottlieb and Turkel [26]. It is a two-step explicit scheme, which is second-order accurate in
time and fourth-order accurate in space. The predictor and corrector parts are written as follows.

Predictor:

G∗
i =Gk

i + �

6
(Fk

i+2 − 8Fk
i+1 + 7Fk

i ) + �t Ski (15)

Corrector:

G∗∗
i =G∗

i + �

6
(−7F∗

i + 8F∗
i−1 − F∗

i−2) + �t S∗
i (16)

Therefore, the solution of G at the i th node at time (k + 1) is the average of the predictor and
corrector:

Gk+1
i = 1

2 (G
k
i + G∗∗

i ) (17)

When Equations (15) and (16) are substituted into (1), continuity and momentum equations can
be expressed as follows.

Predictor:
Continuity equation:

y∗
i = yki + �

6
(uki+2y

k
i+2 − 8uki+1y

k
i+1 + 7uki y

k
i ) (18)

Momentum equation:

u∗
i y

∗
i = uki y

k
i + �

6

{[
(uki+2)

2yki+2 + 1

2
g(yki+2)

2
]

− 8

[
(uki+1)

2yki+1 + 1

2
g(yki+1)

]

+7

[
(uki )

2yki + 1

2
g(yki )

2
]}

+ �tgyki (So − S f )
k
i (19)
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in which

Skfi =
n2uki |uki |
(yki )

4/3
(20)

Corrector:
Continuity equation:

y∗∗
i = y∗

i + �

6
(−7u∗

i y
∗
i + 8u∗

i−1y
∗
i−1 − u∗

i−2y
∗
i−2) (21)

Momentum equation:

u∗∗
i y∗∗

i = u∗
i y

∗
i + �

6

{
−7

[
(u∗

i )
2y∗

i + 1

2
g(y∗

i )
2
]

+ 8

[
(u∗

i−1)
2y∗

i−1 + 1

2
g(y∗

i−1)
2
]

−
[
(u∗

i−2)
2y∗

i−2 + 1

2
g(y∗

i−2)
2
]}

+ �tgy∗
i (So − S f )

∗
i (22)

in which

S∗
fi =

n2u∗
i |u∗

i |
(y∗

i )
4/3

(23)

The dissipative two–four scheme can be used at the interior computational nodes, where the values
of variables at two neighbouring nodes are required, that is at the nodes i = 3, 4, . . . , (M − 3),
(M − 2), (M + 3), (M + 4), . . . , (N − 2), (N − 1).

3.3. Initial condition

As an initial condition, flow depth and velocity at every computational node should be defined at
time t = 0. The flow is assumed to be supercritical in the channel initially and the water surface
profile is determined by numerical integration of the gradually varied flow equation for wide
rectangular channels [27]:

L = y4/3c

gn2

[
3

4

(
y

yc

)4/3

− 3

13

(
y

yc

)13/3
]

+ C (24)

where L is the distance along channel in the flow direction, yc is the critical flow depth, and C is
the constant of integration.

From Equation (24), the distance, �L , between any two successive sections can be written as

�L = y4/3c

gn2

{
3

4

[(
yi
yc

)4/3

−
(
yi−1

yc

)4/3
]

− 3

13

[(
yi
yc

)13/3

−
(
yi−1

yc

)13/3
]}

(25)

Equation (25) can be solved for yi/yc by iteration as

yi
yc

=
{
4

3

[
A + 3

13

(
yi
yc

)13/3
]}3/4

(26)
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where

A= gn2

y4/3c

�x + 3

4

(
yi−1

yc

)4/3

− 3

13

(
yi−1

yc

)13/3

(27)

By assuming the flow depth and velocity at the first section (i = 1), the depths at other sections
can be determined iteratively from Equation (26), for i = 2, 3, . . . , M, M + 2, . . . , N , N + 1. For
node (M + 1), the initial flow depth is calculated by solving the continuity and energy equations
simultaneously.

Continuity equation:

uM yM = uM+1yM+1 (28)

Energy equation:

yM + (1 + �)
u2M
2g

+ �z = yM+1 + u2M+1

2g
(29)

where � is the minor loss coefficient due to abrupt drop.

3.4. Boundary conditions

The MacCormack and the dissipative two–four scheme can be used for interior nodes but not
on the boundary nodes. This is because there are grid points only on one side of the boundary.
Therefore, conditions imposed by the boundary should be either specified or determined by a
suitable technique. Proper care has to be taken so that the boundary conditions are neither under-
specified nor over-specified [20].

The boundary condition that should be specified depends on the flow regime. If the flow
is supercritical, two conditions should be specified at the upstream boundary and none at the
downstream boundary. If it is subcritical, one condition at the upstream boundary and one condition
at the downstream boundary should be specified. As stated by Garcia-Navarro and Saviron [23],
other variable can be found by using the method of characteristics.

The boundary contains an abrupt drop at node M . The discontinuity introduced by the drop is
eliminated by treating the drop as an internal boundary. The MacCormack and the dissipative two–
four schemes described in previous section are used to determine the flow depths and velocities
at interior computational nodes. To compute the flow conditions at internal and downstream
boundaries, the standard method of characteristics is used [28].

3.4.1. Upstream boundary. At the upstream boundary, the flow is supercritical and the flow con-
ditions do not change during the solution. Therefore, two conditions, flow depth and flow velocity
are specified at the first computational node, i = 1. These two values remain unchanged at each
time level.

3.4.2. Downstream boundary. At the downstream boundary, the flow is subcritical. Therefore,
one condition is specified and the other variable is computed by the method of characteristics.
At (N + 1)th node, a constant flow depth is given. The velocity can be found from the positive
characteristic equation [28]. The computational grid is shown in Figure 3. In Figure 3, nodes A
and C correspond to nodes (N ) and (N + 1), respectively. Here in only the equations used will
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+

-

Figure 3. Notation for characteristic curves at downstream and interior boundaries.

be given. The notation for the positive (C+) and negative (C−) characteristics equations is given
in Figure 3.

Using this notation and � =�t/�x , the method of characteristics gives the velocity at point R as

uR = uC + �(cCuA − cAuC )

1 + �(uC − uA + cC − cA)
(30)

in which c= √
gy is the celerity of a small amplitude gravity wave in a rectangular channel for

shallow water. Then, the celerity and the depth at point R are, respectively

cR = cC + �uR(cC − cA)

1 + �(cC − cA)
(31)

yR = yC − �(uR + cR)(yC − yA) (32)

After having obtained the values at point R, the velocity at point P can be computed. As stated
before, point P corresponds to the new time level of node (N + 1). Substituting the notation used
in the finite difference schemes, the velocity at node (N +1) at time level (k+1) can be expressed
as follows:

uk+1
N+1 = ukR − g

ckR
(yk+1

N+1 − ykR) − g�t (S fR − So)
k (33)

3.4.3. Interior boundary. Saint-Venant equations are not valid at the abrupt drop since a disconti-
nuity occurs in the flow. Therefore, the drop should be treated as an interior boundary and solved
by other techniques. Node (M) can be considered as a downstream boundary to the first reach of
the channel and node (M+1) can be considered as an upstream boundary to the second reach. The
unknowns at these nodes are the depths of flow, yM and yM+1, and the velocities, uM and uM+1
at time level (k + 1). In case of minimum B-jump, the flow will be supercritical on the drop. For
supercritical flow, both C+ and C− characteristic lines proceed in the flow direction. Therefore,
C+ and C− characteristic equations can be both used for node (M). Two of the four unknowns,
yM and uM can be solved by these two equations. After obtaining two unknowns, remaining two
unknowns, yM+1 and uM+1 can be solved by using the continuity and the energy equations. Since
minimum B-jump occurs after the drop, the frictional head loss is negligible and energy equation
can be written between sections (M) and (M + 1) by using a minor loss coefficient due to the
drop.
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The notation for the characteristic equations used for the supercritical flow on the drop, i.e.
at (M)th node, is shown in Figure 3. Here, nodes A and C denote nodes (M − 1) and (M),
respectively.

For computing the values of variables at point R, the method of characteristics are used. The
velocity, celerity and the flow depth at point R are calculated by using the Equations (30)–(32).

The variables at point S can be calculated as

uS = uC − �(cCuA − cAuC )

1 + �(uC − uA − cC + cA)
(34)

cS = cC − �uS(cC − cA)

1 − �(cC − cA)
(35)

yS = yC − �(uS − cS)(yC − yA) (36)

With the variables determined at points R and S, the depth y, and the velocity u at node (M) at
time level (k + 1) can be determined, respectively as

yP = yk+1
M = 1

(cR + cS)k

{
yScR + yRcS + cRcS

[
uR − uS

g
− �t (S fR − S fS )

]}k

(37)

uP = uk+1
M = ukR − g

ckR
(yk+1

M − ykR) − g�t (S fk − So)
k (38)

After obtaining the values of yk+1
M and uk+1

M the values of yk+1
M+1 and uk+1

M+1 can be obtained by
solving equations of continuity and energy simultaneously as follows:

Continuity:

uk+1
M yk+1

M = uk+1
M+1y

k+1
M+1 (39)

Energy:

yk+1
M + (uk+1

M )2

2g
(1 + �) + �z = yk+1

M+1 + (uk+1
M+1)

2

2g
(40)

where � is the minor loss coefficient due to abrupt drop.

3.5. Stability condition

In order the MacCormack and the dissipative two–four schemes to be stable, a limitation on
time-step size, �t should be imposed. Both schemes are stable if Courant–Friedrichs–Lewy (CFL)
criterion is satisfied. This criterion is expressed by the following equation [9]:

�t = cn
�x

max(|u| + √
gy)

(41)

where cn is the Courant number. This condition should be satisfied at each iteration level for all
grid points. Hence, a minimum time step, which is the same at all grid points but varies from
one time step to another is used. For the MacCormack scheme cn must be less than or equal to
1, whereas for the dissipative two–four scheme, cn must be less than or equal to 2

3 [26]. In the
present study cn is chosen as 0.65 in order to satisfy both schemes.
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The grid length should be small enough to locate the jump accurately, while it should be big
enough to allow the solution in a reasonable computer time. The computational grid length �x is
chosen as 0.05m by using several trials.

3.6. Artificial viscosity

The MacCormack and the dissipative two–four schemes produce dispersive errors. These dispersive
errors cause high frequency oscillations near steep gradients. To dampen the high frequency
oscillations near the steep gradients, a procedure called artificial viscosity is used [22]. This
artificial viscosity method dampens the oscillations that are near steep gradients but leaves smooth
regions undisturbed.

The variables computed at each time step is modified as follows. First, a parameter �i is computed
from one of the variables. In this study, the unit discharge (uy) is used.

�i =
∣∣∣∣ ui+1yi+1 − 2ui yi + ui−1yi−1

|ui+1yi+1| + 2|ui yi | + |ui−1yi−1|
∣∣∣∣ (42)

�i+(1/2) = �
�x

�t
max(�i+1, �i ) (43)

�i−(1/2) = �
�x

�t
max(�i , �i−1) (44)

where � is the dissipation constant.
The computed variables at new time level are then corrected by using the following equation:

f k+1
i = f k+1

i + �i+(1/2)( f
k+1
i+1 − f k+1

i ) − �i−(1/2)( f
k+1
i − f k+1

i−1 ) (45)

where f is any parameter evaluated by numerical method, and � indicates the amount of dissipation.
Its value should be as low as possible while still dampening high frequency oscillations. Typical
values of � can vary between 0.01 and 0.6. In the present study, the value of � is determined by
trial and error and is taken as 0.11.

4. NUMERICAL RESULTS AND DISCUSSION

4.1. Test of numerical method

The numerical method is tested with the data given in Table I, in which the data for q and �z
are taken from Gür [29] for test numbers 1–10, and the data for test numbers 11–14 are assumed
values. The flow depths at upstream and downstream boundaries, yus and yds, respectively, are
estimated from the data of Gür [29] as the water surface profiles in the channel are not given. The
following values are used in the computations: n = 0.008, � = 0.1, � = 0.11 and cn = 0.65, and
�x = 0.05m.

The variable time step �t is computed from Equation (41) for the fixed �x and cn values at
each time step within the program. The initial steady-state depth and velocity at every node is
computed by using the prescribed upstream depth yus, unit discharge q and step height �z. Then
the unsteady computations are started by increasing the downstream depth to yds and continued

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:1605–1623
DOI: 10.1002/fld



1616 N. D. TOKYAY, A. B. ALTAN-SAKARYA AND E. ESKI

Table I. Experimental test conditions.

Test no. yus (m) yds (m) q (m2/s) �z (m)

1 0.0292 0.0930 0.0420 0.030
2 0.0370 0.1470 0.0732 0.040
3 0.0247 0.1122 0.0470 0.030
4 0.0267 0.1302 0.0552 0.040
5 0.0206 0.1150 0.0420 0.063
6 0.0179 0.0993 0.0360 0.030
7 0.0140 0.0856 0.0280 0.040
8 0.0154 0.1025 0.0352 0.030
9 0.0179 0.1210 0.0450 0.030

10 0.0193 0.1500 0.0554 0.040
11 0.0179 0.1210 0.0450 0.034
12 0.0193 0.1500 0.0554 0.072
13 0.0188 0.1500 0.0554 0.051
14 0.0179 0.0993 0.0360 0.040

Table II. Results of numerical simulation.

Test no. y1 (m) y2 (m) Fr1 S Y

1 0.0316 0.0946 2.39 0.95 2.99
2 0.0391 0.1480 3.02 1.02 3.79
3 0.0270 0.1132 3.38 1.11 4.19
4 0.0289 0.1310 3.59 1.38 4.53
5 0.0230 0.1157 3.84 2.74 5.03
6 0.0204 0.1002 3.94 1.47 4.91
7 0.0166 0.0864 4.18 2.41 5.20
8 0.0180 0.1032 4.65 1.67 5.73
9 0.0203 0.1216 4.97 1.48 5.99

10 0.0217 0.1505 5.53 1.84 6.94
11 0.0203 0.1216 4.97 1.67 5.99
12 0.0217 0.1505 5.53 3.32 6.94
13 0.0212 0.1505 5.73 2.41 7.10
14 0.0204 0.1001 3.94 1.96 4.91

until the steady-state conditions are reached. Steady-state condition is checked by the maximum
relative error, emax, defined as

emax =
∣∣∣∣∣ y

k+1
i − yki

yki

∣∣∣∣∣<tolerance (46)

Hence, the maximum relative error between current and previous water depths over the channel
should be less than a tolerance defined. Normally, tolerance was set to 0.5× 10−4 [30]. However,
for some test runs, it is seen that the solution converged with some oscillations which is also stated
to be a well-known behaviour of the MacCormack scheme [30]. Hence, the number of iteration
used is set to 10 000, which only takes couple of minutes to run. It should be noted that in all test
runs, the maximum relative error is less than 5× 10−4 and each test case reached steady state at
a different time due to the variable time increment, �t .
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Figure 4. Hydraulic jump profiles: (a) test number (2); (b) test number (5); (c) test
number (9); and (d) test number (13).

The results are shown in Table II, in which y1 is the depth on step, which is assumed to be the
initial depth of the jump, y2 is the final depth of the jump, Fr1 = u1/

√
gy1 is the Froude number

of upstream flow, S =�z/y1 is the relative step height, and Y = y2/y1 is the depth ratio. For the
data used, the ranges of Froude number and relative step height are as follows: 2.39�Fr1�5.37
and 0.95�S�3.32.
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The jump profiles computed for test numbers 2, 5, 9 and 13 are shown in Figure 4, which shows
that the numerical model is capable of computing the profile of minimum B-jumps at an abrupt
drop.

4.2. Verification of numerical method

For the hydraulic jump at an abrupt drop the depth ratio, Y = y2/y1 depends on the upstream
Froude number and the relative step height, i.e. Y = F(Fr1, S). Test conditions are compared with
the closest measured values of Y , Fr1 and S, in Table III with the available data in the literature.
Note that the numerically computed and experimentally obtained values of Fr1 and S are not
exactly the same, but very close to each other.

Since Y = F(Fr1, S), it is expected that the depth ratio computed must be close to the measured
values. The percent error between computed and measured values is defined as

e1 =
∣∣∣∣Ymeasured − Ycomputed

Ymeasured

∣∣∣∣ × 100 (47)

It is seen from Table III that the maximum error is 9.31%.
The analytical solutions in the literature give only the relation between Fr1, Y and S, but not

the location of the jump. These relations are as follows:
Moore and Morgan [2]:

Fr21 = Y − (1 + S2)

2(1 − 1/Y )
(48)

Hager [5]:

Fr21 = Y 2 − S2 − 1

2(1 − 1/Y )
(49)

Table III. Comparison of numerical prediction with measured values.

Numerical results Experimental results

Test no. Fr1 S Y Fr1 S Y Error, e1 % Source

2 3.02 1.02 3.79 3.00 1.00 3.85 1.68 Ohtsu and Yasuda [7]
3 3.38 1.11 4.19 3.38 1.06 4.34 3.40 Gür [29]
4 3.59 1.38 4.53 3.60 1.34 4.54 0.16 Gür [29]
5 3.84 2.74 5.03 3.72 2.74 5.11 1.56 Gür [29]
6 3.94 1.47 4.91 3.98 1.4 4.82 1.90 Gür [29]
8 4.65 1.67 5.73 4.64 1.68 5.37 6.77 Gür [29]
9 4.97 1.48 5.99 4.92 1.48 5.48 9.31 Gür [29]

11 4.97 1.67 5.99 4.93 1.67 6.13 2.28 Hager and Bretz [31]
12 5.53 3.32 6.94 5.49 3.3 6.91 0.37 Hager and Bretz [31]
13 5.73 2.41 7.10 5.71 2.41 6.98 1.71 Hager and Bretz [31]
14 3.94 1.96 4.91 4.00 2.00 5.40 9.13 Moore and Morgan [2]
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Table IV. Comparison of numerical and analytical predictions.

Analytical prediction from
Numerical
prediction Equation (48) Equation (49) Equation (50) Equation (51)

Test no. Fr1 S Y Y e2 % Y e2 % Y e2 % Y e2 %

1 2.39 0.95 2.99 3.45 13.19 3.10 3.50 3.29 9.05 2.91 2.78
2 3.02 1.02 3.79 4.25 10.95 3.96 4.50 4.11 7.85 3.80 0.50
3 3.38 1.11 4.19 4.75 11.64 4.47 6.25 4.60 8.78 4.31 2.71
4 3.59 1.38 4.53 5.14 11.80 4.83 6.14 4.93 8.01 4.60 1.41
5 3.84 2.74 5.03 6.23 19.23 5.74 12.31 5.54 9.21 4.96 1.43
6 3.94 1.47 4.91 5.63 12.76 5.33 7.91 5.41 9.28 5.10 3.71
7 4.18 2.41 5.20 6.41 18.83 5.99 13.15 5.90 11.82 5.43 4.19
8 4.65 1.67 5.73 6.62 13.46 6.35 9.65 6.39 10.32 6.10 6.02
9 4.97 1.48 5.99 6.96 13.89 6.72 10.90 6.78 11.71 6.54 8.45

10 5.53 1.84 6.94 7.84 11.57 7.59 8.59 7.61 8.83 7.34 5.53
11 4.97 1.67 5.99 7.03 14.85 6.77 11.55 6.82 12.12 6.54 8.45
12 5.53 3.32 6.94 8.53 18.66 8.10 14.43 7.81 11.22 7.34 5.53
13 5.73 2.41 7.10 8.33 14.78 8.02 11.45 7.95 10.72 7.62 6.83
14 3.94 1.96 4.91 5.88 16.58 5.51 10.88 5.51 11.00 5.10 3.81

Table V. Experimental test conditions.

Test no. yus (m) yds (m) �z (m) q (m2/s) Jump occurs at (m)

15 0.0245 0.1020 0.040 0.0410 2.00
16 0.0230 0.1020 0.040 0.0410 2.40
17 0.0200 0.1020 0.040 0.0410 3.30
18 0.0245 0.0980 0.040 0.0410 2.60
19 0.0245 0.0950 0.040 0.0410 3.20
20 0.0245 0.1020 0.050 0.0410 2.30
21 0.0245 0.1020 0.060 0.0410 2.65
22 0.0245 0.1020 0.040 0.0430 2.70
23 0.0245 0.1020 0.040 0.0450 3.55

Tokyay and Gür [6]:

Fr21 = Y 2 − 2S − 1

2(1 − 1/Y )
(50)

Hager and Bretz [31]:

Fr21 = Y (Y + 1)

2
= Y 2 − 1

2(1 − 1/Y )
(51)

The test results are also compared with the above analytical expressions in Table IV. In Table IV,
the relative depth ratio is computed by using Equations (48)–(51) for the given values of Fr1
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Figure 5. Effect of change in initial data on jump: (a) test numbers (15)–(16)–(17); (b) test numbers
(15)–(18)–(19); (c) test numbers (15)–(20)–(21); and (d) test numbers (15)–(22)–(23).

and S. The percent error in Table IV is computed as

e2 =
∣∣∣∣Yanalytical − Ynumerical

Yanalytical

∣∣∣∣ × 100 (52)

As can be seen from Table IV, Equation (51) given by Hager and Bretz [31] gives the closest
results to the numerical computation. However, this equation is nothing but the equation for a
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Figure 7. Hydraulic jump profiles obtained using different �x values for test number (1).

simple hydraulic jump. Hager and Bretz [31] also states that the step height does not affect the
jump formation and Equation (51) can be used for the minimum B-jumps at an abrupt drop.

The effect of changing initial data is also tested. The test conditions are shown in Table V in
which test number (15) is used as reference data. First the effect of change in upstream depth
is tested. For test numbers (16) and (17), the upstream depth is decreased. As it is expected the
jump moved downstream as shown in Figure 5(a). The effect of downstream depth is tested in
test numbers (18) and (19). In these tests, the downstream depth is decreased, which caused in
the jump to move downstream as expected (Figure 5(b)). The effect of step height is tested in test
numbers (20) and (21). As step height increased, the jump moved downstream (Figure 5(c)). The
effect of increasing unit discharge is tested in test numbers (22) and (23). As the unit discharge
increased, the jump moved downstream (Figure 5(d)). The water surface profiles at different times
are shown in Figure 6 for test number (1). It is seen that the jump travels upstream until it is
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stabilized. In order to confirm the mesh converged solution of the hydraulic jump, the program is
run with different values of �x , ranging from 0.025 to 0.10m for test number (1). It can be seen
form Figure 7 that the hydraulic jump profiles obtained for different �x values are very similar
to each other. All these tests verify the numerical simulation of a minimum B-jump at an abrupt
drop.

5. CONCLUSIONS

The minimum B-jump at an abrupt drop is an example of mixed supercritical and subcritical flow
with a discontinuity at the channel bed. The results have shown that the proposed numerical model
can handle such flows.

In the numerical model presented, a steady-state flow in a prismatic channel, which has a
transition in the form of an abrupt drop, is simulated by using the unsteady flow equations with
time variable as an iteration parameter. The results of the numerical model compare well with the
analytical results obtained by the one-dimensional, steady flow model and with the observations
for a range of 2.39�Fr1�5.73 for the approach Froude number and 0.95�S�3.32 for the relative
step height.

The method yields the initial and the sequent depths of the jump for the given upstream and
downstream flow depths, step height, and discharge. The location of the jump is automatically
computed as part of the solution. The merit of the program to locate the jump for different initial
conditions is also verified. Therefore, the model may be confidently used to design a stilling basin.
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